Uniqueness for Higher Dimensional Trigonometric Series
نویسنده
چکیده
Five uniqueness questions for multiple trigonometric series are surveyed. If a multiple trigonometric series converges everywhere to zero in the sense of spherical convergence, of unrestricted rectangular convergence, or of iterated convergence, then that series must have every coefficient being zero. But the cases of square convergence and restricted rectangular convergence lead to open questions.
منابع مشابه
A Survey of Uniqueness Questions in Multiple Trigonometric Series
The issue is uniqueness of representation by multiple trigonometric series. Two basic uniqueness questions, one about series which converge to zero and the other about series which converge to an integrable function, are asked for each of four modes of convergence: unrestricted rectangular convergence, spherical convergence, square convergence, and restricted rectangular convergence. Thus there...
متن کاملNew Uniqueness Theorems for Trigonometric Series
A uniqueness theorem is proved for trigonometric series and another one is proved for multiple trigonometric series. A corollary of the second theorem asserts that there are two subsets of the d-dimensional torus, the first having a countable number of points and the second having 2d points such that whenever a multiple trigonometric series "converges" to zero at each point of the former set an...
متن کاملUniqueness Questions for Multiple Trigonometric Series
We survey some recent results on the uniqueness questions on multiple trigonometric series. Two basic questions, one about series which converges to zero and the other about the series which converge to an integrable function, are asked for four modes of convergence: unrestricted rectangular convergence, spherical convergence, square convergence, and restricted rectangular convergence. We will ...
متن کاملConvergence, Uniqueness, and Summability of Multiple Trigonometric Series
In this paper our primary interest is in developing further insight into convergence properties of multiple trigonometric series, with emphasis on the problem of uniqueness of trigonometric series. Let E be a subset of positive (Lebesgue) measure of the k dimensional torus. The principal result is that the convergence of a trigonometric series on E forces the boundedness of the partial sums alm...
متن کاملSets of Uniqueness for Spherically Convergent Multiple Trigonometric Series
A subset E of the d-dimensional torus Td is called a set of uniqueness, or U -set, if every multiple trigonometric series spherically converging to 0 outside E vanishes identically. We show that all countable sets are U -sets and also that HJ sets are U -sets for every J . In particular, C × Td−1, where C is the Cantor set, is an H1 set and hence a U -set. We will say that E is a UA-set if ever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002